Thesis Title	Development of Predictive Models for Energy Consumption in Build- ings using Machine Learning Techniques: A Pilot Study with Python Programming
Programme of Studies Course Area of Study Student's Name Students Reg. Number Supervisor Supervisor	MSc in Energy Engineering MEE 540 MSc Thesis Computational Building Physics – Building Information Modelling Maria Andreou 22970 DrIng. Paris A. Fokaides, Assoc. Professor, Mechanical Engineering De- partment Dr Byron Ioannou, Ass. Professor, Architectural Department
	Dr. George Karagiorgis, Assoc. Professor, Mechanical Engineering Depart- ment
Semester Short Description	Fall Semester 2023 Energy consumption in buildings is a significant concern as it contributes to a significant proportion of global energy consumption. Predictive models can help to optimize energy usage and reduce energy waste, resulting in cost savings and a reduction in carbon emissions. Machine learning techniques can be used to develop accurate predictive models, which can help to opti- mize energy usage. The objective of this Master's thesis is to develop pre- dictive models using machine learning techniques for predicting energy con- sumption in buildings. Specifically, the study aims to monitor a pilot build- ing's energy consumption and use the data collected to develop predictive models using the Python language. The pilot building will be monitored for a period of time to collect data on energy consumption. The data collected will be used to develop predictive models using machine learning tech- niques, specifically using Python programming. Different machine learning algorithms such as linear regression, decision trees, random forests, and neural networks will be evaluated and compared to determine the most ef- fective method for predicting energy consumption in buildings. The perfor- mance of the models will be evaluated based on their accuracy, precision, and recall. The results of this study will demonstrate the effectiveness of machine learning techniques for predicting energy consumption in buildings. The best performing algorithm will be identified, and recommendations will be made on the implementation of predictive models in real-world scenarios to optimize energy usage.