Title of Droject	Towarda Loon Combustion	
Project Acronym		
Funding Program		
Project Identifier	AS14-C1-2005-012326	
lotal Budget	7.55 M€	
Starting – Ending Date	03/2005 – 03/2010	
Consortium	Rolls Royce Deutchland (DE)	Karlsruhe Institut für Technologie (DE)
	MIU Aero Engines (DE)	Univesita Degli Studi di Genova (II)
	Avio S.P.A. (II)	Univesita Degli Studi di Napoli (II)
	Turbomeca (FR)	CERFACS (FR)
		Universidad de Zaragoza (SP)
	DLR (DE)	University of Rome ":a Sapienza" (II)
	Lunds University (SW)	Instytut Maszyn Przeplywowych (PL)
	CNRS (FR)	ACIES (FR)
	Ecole Central de Nantes (FR)	IRD (FR)
Project Objectives	The mitigation of aviation emissions in terms of their environmental impact is a	
	priority for both air quality (local impact) and the greenhouse effect (global impact).	
	For a fixed engine cycle, the margin of progress depends on the combustor tech-	
	nology. Lean compusition is the breakthrough which should enable high-level re-	
	auctions in NOX emissions both during the LIO cycle (air quality) and at cruise	
	speeds (global impact). In addition, lean compusition also enhances particulate re-	
	level of lean compustion and will be the technological focus for the project Within	
	this framework, a wide range of experiments will be carried out on more sector or	
	uns mannework, a wide range of experiments will be carried out on mono-sector or tubuler combustors. This new program will be a crucial effort in achieving cufficient	
	tubular compustors. This new program will be a crucial effort in achieving sufficient	
	maturity for the single annular combustor application. The objectives will be an	
	80% reduction in NOx emissions in relation to the CAEP2 regulation limit during	
	the LIO cycle, and low NOX emission indices at cruise speed (EINOX=5g/kg as	
	target). Other gaseous emissions and soot performance characteristics will be also	
	precisely evaluated in this prospect, the project will support the adaptation of most	
	advanced, non-intrusive laser-based measurement techniques to combustor-	
	sactual conditions and their application (in addition to intrusive techniques) to ex-	
	periments of various concepts of injection systems. The injection systems tested	
	will derive from the LOPOCOTEP program or other projects and from advanced	
	CFD optimization of new concepts. The entire range of operating conditions will be	
	experimentally evaluated (LIO points, cruise speeds). Auto-ignition and flashback	
	risk issue as well as lean extinction limit will be assessed. Advanced CFD simula-	
	tion will also exploit the data from the fundamental experiments, thereby enabling	
	calibration of the latest codes in emission	ns predictions.
External References	http://cordis.europa.eu/project/rcn//4//2_en.html	
	Journal of Flow, turbulence and compustion, 83(4), 511-533	
	Journal of Engineering for Gas Turbines	and Power, 130(1), 011508

Research Project Fact Sheet