Course Unit Title	ASOG 402 Fundamentals of pipeline design
Programme of study	BSc in Mechanical Engineering
Lecturer	DrIng. Paris A. Fokaides
Type of course unit	Compulsory (for Oil and Gas Engineering Stream)
ECTS	5
Year of study:	3
Semester(s) offered	Spring Semester 2016, 2018, 2021, 2022
Course content	 Elemental analysis of pipeline design for natural gas transportation
	 Equations used for calculation of pressure drop due to friction
	 Pipping in series and in parallel analysis
	 Compressor stations versus pipe loops
	 Computational Applications
Course modules:	Module 1: Pressure drop due to friction
	 Ideal and real gases
	 General flow equation
	 Colebrook-white plain and modified equation
	Panhandle A and B equation
	 Comparison of flow equations
	Module 2: Pressure required to transport
	 Frictional effect
	 Effect of pipeline elevation
	 Pipping in series and in parallel
	 Locating pipe loops
	Module 3: Compressor Stations
	 Compressor stations locations
	 Hvdraulic balance
	 Isothermal, adiabatic and polytropic compression
	 Compressor performance curves
	Module 4: Pipe analysis
	Pipe wall thickness
	 Barlow's equation
	 Pipe material and grade
	 Class location
	Module 5: Valves and flow measurements
	 Purpose and types of valves
	 Codes for design and construction
	 Flow measurement
	 Flow meters
	Module 6: Mass and Energy Balance Laboratory Exercises
	 Laboratory Exercise 1: Aspen Plus – Performance of a pump
	 Laboratory Exercise 2: Aspen Plus – Performance of a compressor
	 Laboratory Exercise 3: Aspen Plus – Pipes performance
	 Laboratory Exercise 4: Aspen Plus – Compressor station sizing
Textbooks:	Menon, E. S. (2005). Gas pipeline hydraulics. CRC Press.
Instruction language	English
External reference	link