Course Unit Title	ME 202 Fluid Mechanics
Programme of study	BSc in Mechanical Engineering
Lecturer	DrIng. Paris A. Fokaides
Type of course unit	Compulsory
ECTS	6
Year of study:	2
Semester(s) offered	Spring Semester 2015, 2019, 2021, 2022, 2023
Course content	Properties of fluids
	 Pressure and fluid statics
	 Fluid Kinematics
	 Momentum analysis of flow systems
	Flow in Pipes
Course modules:	Module 1: Properties of fluids
	Density and specific gravity
	 Vapour pressure and cavitation
	Viscosity
	Surface tension and capillary effect
	Module 2: Fluid statics
	 Barometer and atmospheric pressure
	 Hydrostatic forces on submerged plane surfaces
	 Buoyancy and stability
	Fluids in rigid-body motion
	Module 3: Fluid kinematics
	 Lagrangian and Eulerian description
	The Reynolds transport theorem
	Module 4: Mass, Bernoulli and energy equations
	 Conservation of mass
	 Mechanical energy and efficiency
	The Bernoulli equation
	 Energy analysis of steady flows
	Module 5: Momentum analysis of flow systems
	 Newton's law and conservation of momentum
	 Forces acting on a control volume
	The linear momentum equation
	The angular momentum equation
	Module 6: Flow in pipes
	 Laminar and turbulent flows in pipes
	 Pipping networks and pump selection
	Flow rate and velocity measurement
	Module 7: Fluid Mechanics Laboratory Exercises
	 Laboratory Exercise 1: Buoyant Forces
	 Laboratory Exercise 2: Measurement of fluids viscosity - rotary viscometer
	 Laboratory Exercise 3: Open channel flow - water channel
	 Laboratory Exercise 4: Volume flow rate measurement - Venturi Tube
	 Laboratory Exercise 5: Impact of a jet – Linear momentum conservation
Textbooks:	Yunus, A. C., & Cimbala, J. M. (2006). Fluid mechanics: fundamentals an
	applications. International Edition, McGraw Hill Publication
Instruction language	English
External Reference	<u>u</u> -