Thesis Title	Development and Numerical Investigation of an Innovative Roof Verti- cal Wind Energy Harvester
Programme of Studies	MSc in Energy Engineering
Course	MEE 540 MSc Thesis
Area of Study	Sustainable Energy Technologies – Wind Energy
Student's Name	Michalis Evripidou
Students Reg. Number	14804
Supervisor	DrIng. Paris A. Fokaides, Assoc. Professor, Mechanical Engineering Department
Supervisory Committee	Dr Chris Christodoulou, Professor, Mechanical Engineering Department
	Dr. George Karagiorgis, Professor, Mechanical Engineering Department
Semester	Fall Semester 2023
Short Description	The world is facing the challenge of climate change, and renewable energy
	has become a vital tool in mitigating this challenge. Rooftop solar panels
	and small wind turbines have been widely used as renewable energy
	sources, but their efficiency and durability are limited. A prototype Roof Ver-
	tical Wind Energy Harvester (RVWEH) is an innovative solution that can
	generate more power than equivalent solar solutions, and perform under
	extreme weather conditions. This master's thesis focused on the construc-
	tion and testing of a prototype Roof Vertical Wind Energy Harvester
	(RVWEH) using 3D printing. The prototype was built with an aerodynamic
	design, which captured and amplified building airflow in wind speeds as low
	as 3 m/s. The design of the RVWEH was compared to traditional turbines in
	terms of energy output and maintenance requirements. In addition to the
	physical prototype, this thesis also involved numerical investigations of the
	RVWEH using Finite Element Method (FEM) analysis. The FEM analysis
	investigated the performance of RVWEH in different wind speeds, turbu-
	lence conditions, and wind directions. The numerical investigation also vali-
	dated the experimental results obtained from the prototype. Furthermore,
	the thesis studied the potential of the RVWEH to integrate with existing solar
	solutions. The cost-effectiveness and space efficiency of the RVWFH were
	analyzed by comparing the energy output of a single RVWFH unit to solar
	panels. The result of this analysis revealed the potential of RVWFH to gen-
	erate 100% of a building's onsite energy needs. The master's thesis aimed
	to contribute to the development of innovative renewable energy solutions
	that could mitigate climate change and create a nath to energy independ-
	ence. The RVWFH had the potential to revolutionize the roofton renewable
	energy sector and this thesis provided a comprehensive investigation of its
	nerformance and notential
	ponomanoo ana potontia.