Course Unit Title	AMEE 304 Heat Transfer
Programme of study	BSc in Mechanical Engineering
Lecturer	DrIng. Paris A. Fokaides
Type of course unit	Compulsory
ECTS	5
Year of study:	3
Semester(s) offered	Fall Semester 2019, 2020, 2022, 2023
Course content	 Basics of Heat Transfer
	 Steady state and transient Heat Conduction
	 Free and forced Heat Convection
	 Thermal Radiation
	 Boiling and Condensation
	 Mass Transfer
Course modules:	1. Introduction – Basics of Heat Transfer
	 Heat transfer applications
	 Heat transfer mechanisms
	 Problem solving techniques
	2. Fundamentals of Heat Conduction
	 Steady versus transient heat transfer
	 Multidimensional heat transfer
	 Heat generation
	 One dimensional heat conduction equation
	3. Steady Heat Conduction
	 Steady heat conduction in plane walls
	 The thermal resistance concept
	 Heat conduction in cylinders and spheres
	 Heat transfer between two solids (Shape factor)
	4. Transient Heat Conduction
	 Lumped system analysis
	 Transient heat conduction with spatial effect
	 Transient heat transfer in multi-dimensional systems
	5. Fundamentals of Heat Convection
	 Physical mechanisms of convection
	 Classification of fluid flows
	 Velocity and thermal boundary layer
	Laminar and turbulent flows
	6. Forced Convection
	 Parallel flow over flat plates
	 Flow across cylinders and spheres
	 Laminar flows in tubes
	I urbulent flows in tubes
	7. Natural Convection
	 Physical mechanism of natural convection
	Equation of motion
	 Natural convection over surfaces
	 Inatural convection inside enclosures Combined natural and forced encrystation
	 Combined natural and forced convection Eurodementale of Thermal Dadiation
	o. rundamentals of i nermai kadiation
	I he view factor

	 Radiation heat transfer: black surfaces
	 Radiation heat transfer: diffuse and gray surfaces
	 Radiation shields
	 Emissivity and absorptivity of gases
	9. Boiling and Condensation
	Boiling heat transfer
	 Condensation heat transfer
	10. Mass Transfer Principles
	 Analogy between heat and mass transfer
	 Fick's law of diffusion
	 Boundary conditions
	 Steady mass diffusion through a wall
	 Water vapor migration in buildings
	11. Transient Mass Transfer
	 Transient mass diffusion
	 Diffusion in a moving medium
	 Mass convection
	 Simultaneous heat and mass transfer
	Laboratory Exercises:
	 Determination of the Specific Heat Capacity
	2. Determining the thermal conductivity of materials using the single-
	plate and flux plate methods
	3. Forced convection over flat plates, plates with fins and plates with
	rods
	4. Free convection over flat plates, plates with fins and plates with rods
	5. Thermal Radiation System
	6. Radiation intensity and thermoelectric Converter
Textbooks:	Cengel, Y. A., & Ghajar, A. J. (2011). Heat and mass transfer (a practical
	approach, SI version). McGraw-Hill Education
Instruction language	English
External Reference	link