Thesis Title Programme of Studies Course Area of Study Student's Name Students Reg. Number Supervisor	Optimization of solid biomass boiler's combustion chamber using CFD MSc in Sustainable Energy Systems MES 580 MSc Thesis Sustainable Energy Technologies – Biofuels Theoklitos Klitou 18755 DrIng. Paris A. Fokaides, Asst. Professor, Mechanical Engineering Depart- ment
Supervisory Committee	Dr Chris Christodoulou, Professor, Mechanical Engineering Department Dr. George Karagiorgis, Professor, Mechanical Engineering Department
Semester Short Description	Fall Semester 2021 This master thesis is part of the MSc in Sustainable Energy Systems pro- gram at Frederick University. The use of Computational Fluid Dynamics (CFD) has gained popularity in the engineering world, proving beneficial in reducing design and production time and costs. In recent years, CFD has been increasingly employed for optimizing the combustion process in bio- mass furnaces, serving as a crucial tool for boiler design and analysis under various working conditions. The study focuses on the existing solid biomass EcoBio 25 (29 kW) boiler, utilizing CFD simulations in Solidworks Flow Sim- ulation to optimize its combustion chamber. A comprehensive literature re- view was conducted to explore previous methods and approaches em- ployed for biomass boiler optimization. Different design specifications were employed, modifying parameters and conditions to generate various simu- lation studies. Through a comparative analysis of these studies, the most efficient design processes were identified. The thesis concludes with a par- ametric analysis, recommendations, and conclusions extracted from Solid- works Flow Simulation, presenting the optimized design study yielding the best results, particularly the highest outlet water temperature. These find- ings contribute valuable insights into enhancing the performance and effi- ciency of biomass boilers in sustainable energy systems.